From parameter control to search control: Parameter Control Abstraction in Evolutionary Algorithms
نویسندگان
چکیده
This paper presents a method to encapsulate parameters of evolutionary algorithms and to create an abstraction that simplifies the control and the understanding of the internal behavior of the algorithm. A fuzzy model is used to learn the effects of parameters over the search process. Then, high-level strategies can be defined to modify parameters automatically in order to achieve a scheduled level of balance between exploration and exploitation during the search. We experimented supervised control strategies and autonomous schemes that adjust parameters dynamically. Experiments have been performed on the Quadratic Assignment Problem in order to analyze the strengths and weaknesses of each approach. Possible improvements of the general methodology are also discussed.
منابع مشابه
Optimizing the AGC system of a three-unequal-area hydrothermal system based on evolutionary algorithms
This paper focuses on expanding and evaluating an automatic generation control (AGC) system of a hydrothermal system by modelling the appropriate generation rate constraints to operate practically in an economic manner. The hydro area is considered with an electric governor and the thermal area is modelled with a reheat turbine. Furthermore, the integral controllers and electri...
متن کاملApproximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms
In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced. In this approach, first a discretized form of the time-control space is considered and then, a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...
متن کاملDesign and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods Dynamic Parameter Control in Simple Evolutionary Algorithms
Evolutionary algorithms are general, randomized search heuristics that are influenced by many parameters. Though evolutionary algorithms are assumed to be robust, it is well-known that choosing the parameters appropriately is crucial for success and efficiency of the search. It has been shown in many experiments, that non-static parameter settings can be by far superior to static ones but theor...
متن کاملDynamic Parameter Control in Simple Evolutionary Algorithms
Evolutionary algorithms are general, randomized search heuristics that are influenced by many parameters. Though evolutionary algorithms are assumed to be robust, it is well-known that choosing the parameters appropriately is crucial for success and efficiency of the search. It has been shown in many experiments, that non-static parameter settings can be by far superior to static ones but theor...
متن کاملSECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008